
J. Fluid Mech. (2001), vol. 447, pp. 409–411. c© 2001 Cambridge University Press

Printed in the United Kingdom

409

B O O K R E V I E W S

Evolution of Spontaneous Structures in Dissipative Continuous Systems. Edited
by F. H. Busse & S. C. Müller. Springer, 1998. 583 pp. ISBN 3-540-65154-3.
DM 139.90.
J. Fluid Mech. 447, 2001, DOI: 10.1017/S0022112001216875

Pattern formation occurs in many systems in nature. Classic examples involve fluid
instabilities driven by buoyancy, vibration or shear, but there are many others involv-
ing, for instance, electric or magnetic fields, chemical reactions, biological systems and
even granular materials. While the physics of each problem may be different, there is
enough mathematical similarity that a general nonlinear theory of pattern formation,
or spontaneous formation of structure, has developed.

This edited volume aims to demonstrate, by providing numerous examples, that
the common mathematical language of pattern formation can fruitfully be used
to interpret the transition from order to disorder in a wide variety of physical
systems. The book originated as part of a six-year programme on the ‘Evolution of
Spontaneous Structures in Dissipative Continuous Systems’, funded by the Deutsche
Forschungsgemeinschaft, and the intention was to review the current state of the field
using the projects in the research programme as examples. Many, but not all, of the
contributors to the volume were part of the programme, but not all projects were
included in the volume.

The book is made up of two main parts. The first fifth or so is a review article
‘Mathematical tools for pattern formation’ by Dangelmayer and Kramer, providing
the background mathematical structure for the remainder of the volume. There
are two main streams within the mathematical theory, and which one is relevant
depends crucially on the symmetry of the physical system under consideration. Closed
experimental systems, or numerical calculations posed in periodic domains, will
result in finite sets of ordinary differential equations (ODEs), the range of validity
of which decreases as the size of the system increases. Open-flow experiments, or
calculations performed in large (strictly speaking, infinite) domains, result in sets of
partial differential equations (PDEs), typically of the Ginzburg–Landau type. This
dichotomy is reflected in the structure of the first review article: the first half discusses
pattern-forming transitions in systems that have discrete or circular symmetries, and
the second discusses the real and complex Ginzburg–Landau equation in one and
two dimensions, and related equations.

The second, and much larger, part of the book touches on many important areas
of pattern formation in fluid mechanical and related problems. In each chapter the
authors describe their recent work and, to a greater or lesser extent, review the work of
other researchers. The topics covered include: the Taylor–Couette system and others
characterized by an axisymmetric experimental setup; binary fluid convection; pattern
formation with through-flow; coherent structure formation in open flows; theoretical
and experimental aspects of pattern formation in the Faraday wave experiment in
both small and large containers; pattern formation in the presence of inhomogeneities
in the background state; pattern formation in electrically driven smectic and nematic
liquid crystals; spiral wave formation during surface catalysed and auto-catalytic
chemical reactions; pattern formation in charge carriers in semi-conductors; pattern
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formation in granular materials; generation of magnetic fields in a laboratory dynamo;
and the self-organised patterns of the slime-mould Dictyostelium discoideum. Many of
the articles combine theoretical, numerical and experimental aspects and have lengthy
lists of references.

Overall, the book is a remarkable achievement, bringing together as it does so many
of the strands of research in so many different fields of physics and mathematics,
and managing to present a digestible mixture of experiment and theory in almost
every article. The quality of the individual articles is good overall but varies: some
have been written as general reviews of the field, and so should be useful to a wide
audience, while others are more restricted in scope and will have a shorter shelf-life.
The review of developments in the Faraday wave experiment, by Müller, Friedrich
and Papathanassiou, is particularly useful to me, but other readers will find interest
in other places. I also thought it interesting to see the relative position of theory
and experiment in different fields: in the Faraday problem, for instance, quantitative
comparisons between the nonlinear theory and the observed experimental pattern are
possible, while in electroconvection, even the linear theory is too difficult owing to
the large number of material parameters.

The part of the book I find the least satisfying is the introductory review of
the mathematical background: the scope is broad, but not enough space has been
given to the review to do the topics justice, and many of the technical ideas need
more explanation to make them intelligible. But I also think that an opportunity
has been missed. As mentioned above, the first half of the review deals with finite-
dimensional dynamics (ODEs) and the second with infinite-dimensional dynamics
(PDEs) – there is much current interest in the boundary between these two, relevant
to pattern formation in large but finite boxes. This would have been an ideal place
for an exploration of topics such as the formation of quasi-patterns, which have
orientational but not translational order.

The back cover states that the book ‘addresses researchers but it could also be used
as a text for graduate work’. I agree with the first part of this but not the second,
though of course individual articles could be useful to those starting out in this field.

A. M. Rucklidge
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Turbulence is of course of great technological importance because of the large effects it
has on the flows in which it occurs. The prediction of these effects in a flow of interest
is one of the primary concerns of applied fluid dynamicists, and it is often the case that
the uncertainties in a fluid dynamic calculation are dominated by uncertainties in the
turbulence models. Therefore, one can argue that for many students of fluid dynamics,
Reynolds-averaged turbulence models, their approximations and limitations are of
most relevance in the study of turbulence.

In this context, the new book Statistical Theory and Modelling for Turbulent Flows
by Durbin and Petterson-Reif is a particularly welcome addition to the turbulence
literature. This text is designed to explain, motivate and occasionally debunk current
techniques for the Reynolds-averaged (one-point) modelling of turbulent flows. Most
of the material in the text will be accessible to graduate students with a basic
background in fluid mechanics and mathematics. But the authors’ compilation of and
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insight into the literature of one-point Reynolds-averaged turbulence modelling will
be valuable to the turbulence research community as well.

The book is organized in three parts, with distinctly different goals and subject
matter. Part I is a presentation of fundamentals, including mathematical and statistical
background, the Reynolds-averaged description of turbulence and the phenomenology
and structure of turbulent flows. The discussion of turbulence phenomena is in places
a bit cursory. For example, the logarithmic layer in wall-bounded shear layers is
discussed in the context of a mixing-length description of the eddy viscosity, with
only a brief mention of the overlap region and intermediate asymptotics. Similar
comments apply to the treatment of free shear flows and turbulence structure. Thus,
the first part of the book is not a comprehensive treatment of the topics covered.
Rather, it appears calculated to provide the student with the background needed to
approach single-point modelling closures, which is the subject of the second part.

In part II, which is the heart of the book, the authors provide an insightful
exposition of a variety of commonly used turbulence models. Examples of each
major class of model (e.g. one- and two-equation, eddy viscosity, Reynolds stress) are
discussed, as are their ranges of validity. The discussion here is refreshingly frank.
The weaknesses and shortcomings of the models are presented, often with cogent
explanations of the physical reasons why the models fail in certain situations. For
example, there is a nice explanation of the difficulties that the k–ε model encounters
very near a wall. Throughout, it is pointed out that tuning of model constants to
match specific cases is generally not a useful approach, since this does not address
the underlying problems with the models.

The third and final part of the book is devoted to the spectral theory of homoge-
neous turbulence. While this topic is often the focus of an introduction to turbulence,
in this book it is included primarily for completeness. As with the phenomenology in
part I, the coverage here is not comprehensive. Indeed important topics such as the
Kármán–Howarth equations and the Kolmogorov 4/5 law are absent. However, the
authors’ treatment gives the student a starting point for a deeper study of turbulence
theory.

In summary, this book is not as comprehensive or deep a treatment of turbulence
as one might like for some purposes, but it is an excellent introduction for those
interested in Reynolds-averaged (one-point) turbulence modelling. It will be valuable
to students beginning their study of turbulence. However, the book will also be of
value to all of those interested in turbulence modelling, because of its comprehensive
and insightful compilation of current one-point modelling techniques, and its extensive
references to the turbulence modelling literature.

R. D. Moser


